2 research outputs found

    Effects of Tank Gun Structural Components on the First Shot Hit Probability

    Get PDF
    Fire power for a main battle tank is one of the most important performance parameters like survivability and mobility. Fire power effectiveness is directly related to the first shot hit probability, performance of main gun, second armament, gun and turret drive system, fire control system, automatic target tracker, commander and gunner sight etc. First shot hit probability (a measure of cumulative effects of errors) is affected by the variations of the projectile parameters, the main gun structure uncertainties, fire control system errors, interaction between the projectile and the gun barrel and the unpredictable environmental changes. These errors and variations can be eliminated or minimised by understanding and simulating the firing event properly, manufacturing the related parts in high precision, using advanced fire control algorithms, and accurate sensors. In this review study, the effects of main gun structural components on the first shot hit probability are investigated taking into account all of the associated error sources. In order for a main battle tank to have both high and repetitive first shot hit probability under all battlefield conditions the gun structure should respond in a similar manner in successive firings without causing any abrupt change in performance. In this study, first the dynamic behaviour of gun/projectile system is discussed and then the design recommendations for the main gun components such as bearings, gun barrel, recoil system etc. to achieve higher first shot hit probability are reviewed

    A review on the gun barrel vibrations and control for a main battle tank

    No full text
    Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system while the tank is moving, better understanding of the dynamic behavior of the gun system is required. In this study, the dynamic behaviour of a gun system is discussed in this respect. Both experimental and numerical applications for the determination of the dynamic behaviour of a tank gun system are investigated. Methods such as the use of muzzle reference system (MRS) and vibration absorbers, and active vibration control technology for the control and the reduction of the muzzle tip deflections are also reviewed. For the existing gun systems without making substantial modifications, MRS could be useful in controlling the deflections of gun barrels with estimation/prediction algorithms. The vibration levels could be cut into half by the use of optimised vibration absorbers for an existing gun. A new gun system with a longer barrel can be as accurate as the one with a short barrel with the appropriate structural modifications
    corecore